Interaction of Caffeine-, IP₃- and Vanadate-Sensitive Ca²⁺ Pools in Acinar Cells of the Exocrine Pancreas

Martine Dehlinger-Kremer, Stefan Zeuzem, and Irene Schulz Max-Planck-Institut für Biophysik, D-6000 Frankfurt am Main 70, Federal Republic of Germany

Summary. Previous studies have shown the existence of functionally distinguishable inositol 1,4,5-trisphosphate- (IP₃) sensitive and IP₃-insensitive nonmitochondrial intracellular Ca²⁺ pools in acinar cells of the exocrine pancreas. For further characterization of Ca²⁺ pools, endoplasmic reticulum (ER) membrane vesicles were separated by Percoll gradient centrifugation which allowed us to distinguish five discrete fractions designated P_1 to P_5 from the top to the bottom of the gradient. Measuring Ca^{2+} uptake and Ca^{2+} release with a Ca^{2+} electrode, we could differentiate three nonmitochondrial intracellular Ca^{2+} pools: (i) an IP₃-sensitive Ca2+ pool (IsCaP), vanadate- and caffeine-insensitive, (ii) a caffeine-sensitive Ca²⁺ pool (CasCaP), vanadate- and IP₃-insensitive, and (iii) a vanadate-sensitive Ca2+ pool (VasCaP), neither IP₃- nor caffeine-sensitive, into which Ca²⁺ uptake is mediated via a Ca^{2+} ATPase sensitive to vanadate at 10^{-4} mol/liter. A fourth Ca2+ pool is neither IP3- nor caffeine- or vanadate-sensitive. Percoll fraction P_1 contained essentially the IsCaP, CasCaP and VasCaP and was mainly used for studies on Ca2+ uptake and Ca²⁺ release.

When membrane vesicles were incubated in the presence of caffeine (2 \times 10⁻² mol/liter), Ca²⁺ uptake up to the steady state $[Ca^{2+}]$ did not appear to be altered as compared to the control Ca²⁺ uptake. However, in control vesicles spontaneous Ca² release occurred after the steady state had been reached, whereas caffeine-pretreated vesicles did not spontaneously release Ca²⁺. Addition of IP₃ at steady state $[Ca^{2+}]$ induced similar Ca^{2+} release followed by Ca2+ reuptake in both caffeine-pretreated and control vesicles. However, when caffeine was acutely added at steady state, Ca²⁺ was released from all Ca²⁺ pools including the IsCaP. Following Ca²⁺ reuptake after IP₃ had been added, a second addition of IP₃ to control vesicles induced further but smaller Ca²⁺ release, and a third addition resulted in a steady Ca²⁺ efflux by which all Ca²⁺ that had been taken up was released. This steady Ca2+ release started at a Ca2+ concentration between 5.5-8 \times 10⁻⁷ mol/liter and could also be induced by the IP₃ analogue inositol 1,4,5-trisphosphorothioate (IPS₃) or by addition of Ca²⁺ itself. Ruthenium red (10⁻⁵ mol/liter) inhibited both caffeine-induced as well as Ca²⁺-induced but not IP₃-induced Ca²⁺ release. Heparin (100 μ g/ml) inhibited IP₃- but not caffeine-induced Ca²⁺ release. The data indicate the presence of at least three separate Ca²⁺ pools in pancreatic acinar cells: the IsCaP, CasCaP and VasCaP. During Ca2+ uptake these Ca2+ pools appear to be separate. However, when steady state is reached, we assume that these Ca2+ pools come into contact and total Ca2+ release from all three pools can occur. The mechanism of this "contact" of Ca^{2+} pools is not clear but seems to be different from that induced

by GTP in the presence of polyethylene glycol, which probably involves fusion of membranes.

Key Words fusion · ruthenium red · heparin · GTP

Introduction

In many different cell types hormones and neurotransmitters act by releasing Ca2+ from intracellular stores. Whereas in nonexcitable cells inositol 1,4,5trisphosphate (IP₃) is an important intracellular messenger for Ca²⁺ release (Streb et al., 1983; Berridge & Irvine, 1984) in excitable tissues, the main process that leads to elevation of cytosolic free-Ca²⁺ concentration is Ca²⁺ entry from the extracellular space through voltage-gated Ca²⁺ channels (Hosey & Lazdunsky, 1988). In special tissues, such as the smooth muscle, Ca²⁺ entry into the cell induces Ca²⁺ release from a Ca^{2+} store that is also sensitive to caffeine. In this cell type the Ca^{2+} -induced Ca^{2+} release mechanism seems to be present in addition to the IP₃-sensitive Ca²⁺ release mechanism (Leijten & van Breemen, 1984; Kanaide, Shogakiuchi & Nakamura, 1987; Kanmura, Raeymaekers & Casteels, 1989). In skeletal muscle, the initial signal for Ca^{2+} release is an electrical depolarization of the transverse T-tubule membrane which is detected by the voltage-dependent dihydropyridine-sensitive receptor (DHPR). Ca^{2+} release from the sarcoplasmic reticulum (SR) occurs through a channel in close contact to the DHPR, which is generally referred to as ryanodine receptor, since it binds the plant alkaloid ryanodine (Lai et al., 1988; Takeshima et al., 1989; Valdivia & Coronado, 1989). Ca²⁺ release can be induced by the pharmacological actions of ryanodine or of caffeine or by increase in the concentration of free intracellular [Ca²⁺] (Endo, 1977; Martonosi, 1984). The coexistence of both IP₃-sensitive and caffeine-sensitive Ca2+ stores has been described for

the dorsal root ganglion neurons (Thayer, Perney & Miller, 1988) and for smooth muscles (Kanaide et al., 1987).

We have recently characterized two different ---an IP₃-sensitive (IsCaP) and an IP₃-insensitive (IisCaP) — Ca^{2+} stores in pancreatic acinar cells. Whereas the IsCaP takes up Ca^{2+} via a Ca^{2+}/H^+ exchanger that is stimulated in the presence of ATP. the IisCaP is filled from the cytosol by an ATPdependent vanadate-inhibitable Ca2+ pump (Thévenod et al., 1989*a*). Any Ca^{2+} release mechanism for the latter Ca²⁺ store has not been found so far. Evidence suggests that in pancreatic acinar cells receptor-mediated stimulation of cytoplasmic Ca²⁺ spikes is generated by IP₃-evoked Ca²⁺ release causing pulses of Ca²⁺-induced Ca²⁺ release from Ca²⁺ pools close to the plasma membrane. Caffeine at low concentrations (1 mM) was shown to broaden these Ca²⁺ spikes (Osipchuk et al., 1990). We have recently reported that a Ca^{2+} channel is present in the endoplasmic reticulum of pancreatic acinar cells, that can be activated by caffeine and inhibited by ruthenium red (Schmid et al., 1990). This Ca²⁺ channel, however, appears to be different from the classical ryanodine receptor present in skeletal, cardiac and smooth muscle cells (Rousseau, Smith & Meissner, 1987; Fleischer et al., 1985; Kanmura et al., 1988) since it is voltage dependent, not sensitive to rvanodine and calcium at the conditions applied had no activating effect (Schmid et al., 1990). In the present study we report on IP₃- and caffeine- (or Ca²⁺)-induced Ca²⁺ release from pancreatic endoplasmic reticulum. If caffeine, IP₃ or vanadate are present in the incubation medium, Ca²⁺ uptake does not appear to be altered as compared to the control and the same steady state $[Ca^{2+}]$ is reached. The effects of IP₃ (in the presence of caffeine) and of caffeine (in the presence of IP₃, IPS₃) are the same as in the control. We therefore think that both IP_{3} and caffeine-induced Ca2+ release mechanisms are located in two different Ca²⁺ pools. However, when caffeine or the nonhydrolyzable analogue of IP₃, IPS_2 , is added at steady state all Ca^{2+} that previously had been taken up is released. It therefore appears that during Ca²⁺ uptake these pools are separate and come into connection at steady state by an unknown mechanism, which could involve the intravesicular Ca²⁺ or H⁺ concentration or both. At conditions, at which connection of Ca²⁺ pools is induced like in the presence of polyethylene glycol and GTP (Ghosh et al., 1989), Ca^{2+} can be also released from all three Ca²⁺ stores by either IP₃, by IPS₃, by caffeine or by calcium. However, the GTP-induced "connection" probably involves fusion of Ca^{2+} pools and appears to be different with respect to the kinetics of IP3- and caffeine-induced Ca²⁺ release and Ca²⁺ reuptake as compared to interaction of Ca^{2+} pools in the absence of GTP.

ABBREVIATIONS

CasCaP: caffeine-sensitive Ca2+ pool CK: creatine kinase CP: phosphocreatine (sodium salt) EDTA: ethylenediaminetetraacetic acid ER: endoplasmic reticulum GTP: guanosine-5'-triphosphate GTP_yS: guanosine-5'-o-(3-thiotriphosphate) HEPES: N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid IP₃: D-myo-inositol 1,4,5-trisphosphate IPS3: DL-myo-inositol 1,4,5-trisphosphorothioate lisCaP: IP₃-insensitive Ca²⁺ pool IsCaP: IP₃-sensitive Ca²⁺ pool NaN₃: sodium azide NBD-Cl: 7-chloro-4-nitrobenzene-2-oxa-1,3-diazole PEG: polyethylene glycol PMSF: phenylmethylsulfonyl fluoride VasCaP: vanadate-sensitive Ca2+ pool

Materials and Methods

MATERIALS

Reagents were obtained from the following sources: K_2ATP , benzamidine, bovine serum albumin (lyophilized), EDTA, GTP, Na₃VO₄, NBD-Cl, PMSF, CP (sodium salt), pyruvic acid and succinic acid from Sigma Chemical (St Louis, MO); CK (350 U/ mg at 25°C) and trypsin inhibitor (from soybean) from Boehringer (Mannheim, FRG); NaN₃, D-mannitol, ruthenium red, caffeine and tris(hydroxymethyl)aminomethan from Merck (Darmstadt, FGR); antimycin A, oligomycin, HEPES, heparin and leupeptin from Serva (Heidelberg, FRG); PEG (M_r 6000) from Fluka (Buchs, Switzerland); Percoll (density: 1.129 g/ml, osmolality: 17 mOsmol/kg H₂O) from Deutsche Pharmacia (Freiburg, FRG); and collagenase from *Clostridium histolyticum* type III (132 U/ mg at 37°C) from Worthington (Freehold, NJ). All other reagents were of analytical grade.

 Ca^{2+} -selective electrode membranes containing the neutral carrier N,N-di(11-ethoxycarbonyl)undecyl)-N,N-4,5-tetramethyl-3,6-dioxaoctane amide were purchased from Glasbläserei W. Möller (Zürich, Switzerland).

D-myo-inositol 1,4,5-trisphosphate (IP₃) was a gift from Dr. R. Irvine and DL-myo-inositol 1,4,5-trisphosphorothioate (IPS₃) was kindly provided by Dr. B.V.L. Potter.

METHODS

Preparation of Subcellular Fractions Enriched in Endoplasmic Reticulum

Pancreatic vesicles enriched in endoplasmic reticulum were prepared from 12 male Wistar rats (200–250 g each), which had been fasted overnight. At first acinar cells were prepared by collagenase digestion in a standard Krebs-Ringer-HEPES (KRH) solution containing (in mmol/liter): NaCl 120, KCl 4.7, KH₂PO₄ 1.2, MgCl₂ 1.2, CaCl₂0.1, HEPES 10, glucose 15, trypsin inhibitor 0.1 mg/ml and albumin 0.2% (wt/vol) (pH 7.4); as described previously (Streb & Schulz, 1983). Following 60-min digestion and mechanical dissociation by sequential passage through polypropylene pipet tips of decreasing tip diameter, cells were centrifuged through 20 ml of the above solution containing 4% albumin. Isolated cells were then washed twice in an ice-cold "mannitol buffer" containing (in mmol/liter): mannitol 280, HEPES 5, KCl 1.0, MgCl₂ 1, benzamidine 1, PMSF 0.2, leupeptin 0.001 and 20 μ g/ml trypsin inhibitor, adjusted with Tris to pH 7.0.

Subsequent homogenization and fractionation steps were performed in the cold. Cells were homogenized in the "mannitol buffer" at a protein concentration of about 10 mg/ml by 50 strokes with a tightly fitting Potter-Elvejhem glass/Teflon homogenizer which was motor-driven at 900 rpm.

The resulting homogenate was centrifuged for 5 min at $100 \times g$ and the pellet was rehomogenized. The combined homogenate was centrifuged at $1000 \times g$ for 10 min. The pellet was discarded and the supernatant was further centrifuged at $11,000 \times g$ for 15 min in a Beckmann Model J-21C centrifuge using a Beckmann JA20 rotor. The resulting pellet was composed of an upper whitish fluffy layer and a yellowish bottom layer, which were separated.

The fluffy layer which was enriched by about twofold in ER (as shown by the distribution of the marker enzymes, RNA and NADPH-cytochrome-c-reductase), (Streb et al., 1984) was further fractionated by centrifugation on a Percoll gradient (Thévenod et al., 1989b). For that purpose 1 ml of vesicle suspension was layered over 9 ml of a solution composed of "mannitol buffer" containing 11% (wt/vol) Percoll, pH 7.0 adjusted with 1 N HCI. The resulting density was 1.035 g/cm³. A gradient of densities from 1.020 to 1.141 g/cm³ was generated by spinning the tubes at 41,000 \times g for 40 min in a Beckman Model L350 ultracentrifuge using a Beckman Ti 60 rotor.

In the upper half of the Percoll gradient a thick white layer is present. Five 2-ml fractions (P_1 to P_5) were collected from the top to the bottom of the gradient. For collection of P_1 it is critical to include the very upper part of the white layer. To separate vesicles from Percoll, each fraction was diluted 20 times with "mannitol buffer" and spun down at 200,000 × g for 60 min in a Beckman Ti 60 rotor. The pellets were resuspended in the "mannitol buffer" at a protein concentration of about 20 mg/ml. Vesicles were either used immediately or kept frozen in liquid nitrogen until use.

Measurement of Ca^{2+} Uptake with the Ca^{2+} Electrode

Isolated membrane vesicles were incubated at a protein concentration of 1 mg/ml in 2 ml of "incubation buffer" containing (in mmol/liter): KCl 120, HEPES 25, MgCl₂ 6, K₂ATP 5, KH₂PO₄ 1.2, CP (sodium salt) 10, K succinate 5, K pyruvate 5, oligomycin 0.005, antimycin A 0.01, sodium azide 10 and 10 U/ml CK (pH 7.0) at 25°C. The solution was continuously stirred and the freecalcium concentration of the medium was recorded with a Ca²⁺specific macro-electrode (neutral carrier ETH 1001) as described previously (Streb & Schulz, 1983).

In order to convert the change in free- Ca^{2+} concentration to total amount of calcium, the system was calibrated for each individual determination by additions of known amounts of calcium.

Protein Determination

Proteins were measured by the method of Bradford (1976) using bovine serum albumin as standard.

Results

In previous studies we have shown that two distinct Ca^{2+} uptake mechanisms are present in two nonmitochondrial intracellular Ca^{2+} pools of acinar cells from the exocrine pancreas. A Ca^{2+}/H^+ exchanger mediates Ca^{2+} uptake into an IP₃-sensitive Ca^{2+} pool (IsCaP) and a vanadate-sensitive Ca^{2+} ATPase mediates Ca^{2+} uptake into an IP₃-insensitive Ca^{2+} pool (IisCaP) (Thévenod et al., 1989*a*). In order to separate the IP₃-sensitive Ca^{2+} pool from other Ca^{2+} pools, we have examined in subcellular fractions of the ER separated by Percoll gradient centrifugation the distribution (*i*) of the IP₃ effect, (*ii*) of the caffeine effect, (*iii*) the effect of the Ca^{2+} ATPase inhibitor vanadate and (*iv*) the effect of the H⁺ ATPase inhibitor NBD-Cl on Ca^{2+} uptake.

DISTRIBUTION OF THE IP₃ EFFECT

Subfractionation of endoplasmic reticulum on the Percoll gradient allowed us to distinguish five discrete fractions, from P_1 (the lightest fraction) to P_5 (the heaviest fraction). Ca²⁺ uptake into these fractions as measured with a Ca²⁺ electrode is shown in Fig. 1. A significant Ca²⁺ uptake could only be measured in the three lightest fractions P_1 , P_2 , and P_3 . The vesicles from these fractions took up Ca²⁺ from a medium with a free-Ca²⁺ concentration of about 10^{-6} mol/liter until a steady state of free-Ca²⁺ uptake was reached. In the Percoll fraction P_4 very little Ca²⁺ uptake was observed and in fraction P_5 there was even less Ca²⁺ uptake.

Upon addition of IP₃ (5 × 10⁻⁶ mol/liter) to the Percoll fractions P_1 , P_2 and P_3 Ca²⁺ was released. The IP₃ effect was highest in the Percoll fraction P_1 and decreased from P_1 to the Percoll fraction P_3 . In Percoll fractions P_4 and P_5 no IP₃ effect could be observed (Fig. 1 and Table 1). In the Percoll fraction P_1 Ca²⁺ released by IP₃ was taken up again. This Ca²⁺ reuptake occurred via a vanadate-sensitive Ca²⁺ ATPase, since in the presence of 10⁻⁴ mol/liter of this (Ca²⁺ + Mg²⁺)-ATPase inhibitor reuptake was abolished (Figs. 1 and 2*a*).

These data suggest that the IP₃-sensitive Ca²⁺ pool, as well as the Ca²⁺ pool into which Ca²⁺ is taken up again via a vanadate-sensitive Ca²⁺ ATP-ase, are both localized in the light Percoll fraction P_1 (see also Table 2).

Fig. 1. Ca^{2+} uptake and Ca^{2+} release from membrane vesicles (P_1-P_5) of the Percoll gradient and from the "fluffy layer." A concentrated suspension of membrane vesicles were added to the standard incubation medium in the absence or presence of vanadate as described in Methods. Ca^{2+} uptake was monitored with a Ca^{2+} electrode until steady-state free- Ca^{2+} concentration was reached. Where indicated IP₃ at a final concentration of 5×10^{-6} mol/liter was added. For calibration 5 and 15 nmol $CaCl_2$ was added at final concentrations of 2.5×10^{-6} mol/liter calcium, respectively. Typical for six similar experiments

Effect of Vanadate and of NBD-Cl on Ca^{2+} Uptake

As shown in Fig. 2a-c, preincubation and incubation of membrane vesicles of the Percoll fractions P_1 , P_2 and P_3 with 10^{-4} mol/liter vanadate, apparently did not affect Ca²⁺ uptake and the low steady-state free-Ca²⁺ concentration of about 3.5×10^{-7} mol/liter was reached within the same time as in control conditions. However, in the Percoll fractions P_4 and P_5 vanadate abolished Ca²⁺ uptake (Fig. 2d). It thus appears that in the three lightest fractions P_1 , P_2 and P_3 the vanadate-sensitive Ca²⁺ uptake mechanism is not critically involved in the adjustment of the low steady-state free-calcium concentration. However, when IP₃ was added at steady state to vanadatepreincubated vesicles, Ca²⁺ reuptake was inhibited in Percoll fractions P_1 , P_2 and P_3 . From the degree of vanadate-inhibited Ca²⁺ reuptake it appears that the vanadate-sensitive Ca²⁺ pool (VasCaP) is highest in fraction P_1 and decreases in the Percoll fractions P_2 and P_3 (Fig. 2a-c and Table 2). This is also supported by the absence of apparent Ca²⁺ reuptake in fractions P_2 and P_3 which in P_1 follows the Ca²⁺ release induced by IP₃ in the absence of vanadate (Fig. 2).

Ca²⁺ uptake mediated by the vanadate-sensitive Ca²⁺ ATPase occurs into an IP₃-insensitive Ca²⁺ pool, whereas Ca²⁺ uptake into the IP₃-sensitive Ca²⁺ pool (IsCaP) is mediated by a Ca²⁺/H⁺ exchanger (Thévenod et al., 1989*a*). In the Percoll fractions P_4 and P_5 no Ca²⁺ uptake remained in the presence of 10⁻⁴ mol/liter vanadate (Fig. 2*d*). NBD-Cl did not significantly affect Ca²⁺ uptake in these fractions (*data not shown*). In these fractions also no Ca²⁺ release could be induced by IP₃. This suggests that the VasCaP is the main calcium pool present in these heavy fractions P_4 and P_5 (Fig. 2*d* and Table 2).

Incubation of vesicles with 10⁻⁵ mol/liter NBD-

Fig. 2. Effect of vanadate $(10^{-4} \text{ mol/liter})$ and of NBD-Cl (10⁻⁵ mol/liter) on nonmitochondrial Ca2+ uptake and Ca2+ release in isolated membrane vesicles of Percoll fractions $P_1(a)$ of $P_2(b)$ of $P_3(c)$ and of P_4 and $P_5(d)$. Membrane vesicles (at a final concentration of 1 mg protein/ml) preincubated for 15 min in standard incubation medium without or with 10⁻⁴ mol/ liter vanadate or with 10⁻⁵ mol/liter NBD-Cl (as indicated) were incubated in the same buffer in the presence of the same substances as during preincubation. Ca2+ uptake was monitored with a Ca2+ electrode as described in Methods. Where indicated IP3 at a final concentration of 5 \times 10⁻⁶ mol/liter or CaCl₂ (5 nmol) at a final concentration of 2.5 \times 10^{-6} mol/liter calcium were added. Typical for three similar experiments

Table 1 Distribution of the IP_3 effect in subcellular vesicle fractions from exocrine pancreas separated by Percoll gradient centrifugation

Subcellular fractions	IP ₃ effect (Ca ²⁺ release) nmol/mg protein	n
Fluffy layer 4.65 ± 1.01		10
P_1	6.72 ± 1.59	9
P_2	3.68 ± 0.40	8
P_3	1.86 ± 0.16	8
P_4	0	8
P_5	0	8

Values are means \pm SEM of separate experiments (*n*).

Table 2. Distribution of the functionally differentiable nonmitochondrial intracellular Ca²⁺ pools in the Percoll fractions P_1-P_5

Intracellular	Percoll fractions					
Ca ²⁺ pools	$\overline{P_1}$	<i>P</i> ₂	<i>P</i> ₃	<i>P</i> ₄	<i>P</i> ₅	
IsCaP IP ₃ sensitive Vanadate insensitive	+++	++	+			
CasCaP Caffeine sensitive Vanadate insensitive	+ + +	+	_	_	_	
VasCaP Vanadate sensitive	+ + +	+ +	+	+ + +	+++	

Symbols (+ and -) represent the relative enrichment in the respective Ca^{2+} pools.

Cl, a concentration that completely abolished nonmitochondrial MgATP-driven H⁺ transport in isolated pancreatic membrane vesicles from ER and Ca²⁺ uptake into the IsCaP (Thévenod et al., 1989*a*,*b*), produced a partial inhibition of Ca^{2+} uptake in membrane vesicles of the Percoll fraction P_1 and a total inhibition in membrane vesicles of the Percoll fractions P_2 and P_3 (Fig. 2a-c). This indicates that Ca^{2+} uptake into the Percoll fractions P_2 and P_3 occurs via the Ca^{2+}/H^+ exchanger identified in the IsCaP and also in similar Ca^{2+} pools lacking the IP₃ receptor of isolated permeabilized pancreatic acinar cells (Thévenod et al., 1989*a*). Since in fractions P_2 and P_3 , only a small IP₃ effect was detected the main Ca^{2+} pool in these fractions appears to be the IP₃and vanadate-insensitive Ca^{2+} pool with the $Ca^{2+}/$ H⁺ exchanger.

Caffeine- and Ca^{2+} -Induced Ca^{2+} Release: Interaction of Both Caffeine- and $IP_3\text{-}$ Sensitive Ca^{2+} Pools

The methylxanthine caffeine has been shown to induce Ca²⁺ release from the sarcoplasmic reticulum of smooth muscles, where it activates the Ca²⁺ channel responsible for Ca²⁺-induced Ca²⁺ release (Endo, 1977; Rousseau & Meissner, 1989). When Ca²⁺ loading of isolated pancreatic membrane vesicles (fraction P_1) was performed in the presence of 2×10^{-2} mol/liter caffeine in the incubation medium, neither Ca²⁺ uptake nor the IP₃ effect were apparently affected (Fig. 3). However, when caffeine was acutely added at steady state, Ca²⁺ release was observed in the Percoll fraction P_1 (Figs. 4*a* and 5*a*). In 10 experiments with the Percoll fraction P_1 , Ca²⁺ was released by caffeine with a rate of 2.88 ± **Fig. 3.** Effect of caffeine $(2 \times 10^{-2} \text{ mol/liter})$ on Ca²⁺ uptake and Ca²⁺ release from membrane vesicles of the Percoll fraction P_1 . Membrane vesicles of the Percoll fraction P_1 (1 mg protein/m)) were incubated in standard incubation medium with or without 2×10^{-2} mol/liter caffeine as indicated. Ca²⁺ uptake was monitored with a Ca²⁺ electrode as described in Methods. IP₃, at a final concentration of 5×10^{-6} mol/liter and CaCl₂ (4 nmol) at a final concentration of 2×10^{-6} mol/liter, were added where indicated. Typical for three similar experiments

0.01 sE nmol/mg protein min. In P_2 and in the "fluffy layer," the rates of caffeine-induced Ca2+ release were small and only seen at inhibited Ca²⁺ reuptake in the presence of vanadate. Under these conditions the rates were only 0.31 ± 0.05 SEM nmol/mg protein \cdot min in the P₂ fraction (Fig. 5b) and 0.86 \pm 0.01 sem nmol/mg protein · min in the "fluffy layer" (data not shown). When Ca^{2+} release was induced by caffeine in fraction P_1 all Ca²⁺ that had been previously taken up was released and subsequent addition of IP₃ did not further induce any significant Ca²⁺ release (Fig. 4a). However, when IP₂ or its metabolic stable analog IPS₃ (Cooke, Gigg & Potter, 1987; Willcock, Potter & Cooke, 1988) was added first, subsequent addition of caffeine induced further Ca2+ release (Figs. 4a and 6). Assuming that the IsCaP was empty under these conditions, this indicates that in addition to an IsCaP also a CasCaP exists which can be functionally discriminated from the IsCaP. Similarly under conditions at which the VasCaP is not filled, a caffeine effect still can be induced (Fig. 6). The data shown in Figs. 4a and 6 together with the data shown in Fig. 3 indicate that in fraction P_1 lsCaP and caffeine-sensitive Ca²⁺ pools (CasCaP) are separate intracellular Ca²⁺ pools which come into connection when they are filled and when steady state $[Ca^{2+}]$ had been reached. The experiment presented in Fig. 7 suggests that this "connection" is initiated by the CasCaP. Incubation of membrane vesicles from the Percoll fraction P_1 in the presence of 2×10^{-2} mol/liter caffeine abolished the "spontaneous" Ca2+ release observed in control vesicles (Fig. 7). This "spontaneous" Ca²⁺ release from control vesicles incubated with ATP and an ATP-regenerating system (see Methods) could not be due to consumption of ATP, since additional administra-

tion of 2×10^{-3} mol/liter ATP did not influence Ca²⁺ efflux (*not shown*). Similarly in vanadatetreated vesicles where the extent of Ca²⁺ release is enhanced as compared to control by preventing the competing Ca²⁺ reuptake process, the presence of

caffeine decreased the "spontaneous" Ca²⁺ release (Fig. 7). On the other hand, when Ca²⁺ uptake into the IsCaP was avoided by incubating the vesicles with 5×10^{-5} mol/liter IPS₃, the rate of "spontaneous" Ca²⁺ release was similar as in control vesicles

(Fig. 7). When vesicles from the Percoll fraction $P_{\rm t}$ were preincubated at the same experimental conditions but without ATP for 1 hr before Ca^{2+} uptake was initiated by addition of ATP. Ca²⁺ uptake and "spontaneous" Ca²⁺ release rates were the same as those shown in Fig. 7 (data not shown). We therefore do not think that "spontaneous" Ca²⁺ release could be explained by a decay of membrane vesicles. The outside calcium concentration is also important for Ca^{2+} release after steady state $[Ca^{2+}]$ had been reached. In 10 experiments with fraction P_1 further Ca²⁺ was released when a critical free-Ca²⁺ concentration of 6.75 \pm 0.36 (SEM) \times 10⁻⁷ mol/liter had been reached. This is demonstrated in Figs. 1. 4b, and 5a and c when Ca^{2+} was added or in Fig. 4c where the increase of $[Ca^{2+}]$ was induced by the nonhydrolyzable IP₃ analogue IPS₃. This Ca²⁺-induced Ca^{2+} release was not observed in P_2 or the "fluffy layer" (Fig. 4b).

CAFFEINE AND IP_3 Act on Two Different Ca^{2+} Channels

Single-channel recordings from microsomal fraction of smooth muscles incorporated into lipid bilayer have shown that heparin inhibits the IP₃induced opening of sarcoplasmic reticulum Ca²⁺ channels without affecting the caffeine-induced Ca²⁺ release (Ehrlich & Watras, 1988). When heparin (100 μ g/ml) was added to vesicles of the Percoll fraction P_1 at steady state prior to IP₃ addition, the IP₃ effect was abolished but the subsequent caffeine effect remained (Fig. 5*a*). Heparin did not affect the caffeine effect neither did it inhibit the Ca²⁺ release induced by successive additions of Ca²⁺ pulses (Fig. 5*c*).

When ruthenium red (RR), an inhibitor of the Ca^{2+} -sensitive Ca^{2+} release channel of cardiac and skeletal sarcoplasmic reticulum (Miyamoto & Racker, 1982; Rousseau et al., 1986), was present in the incubation medium at a concentration of 10^{-5} mol/liter, the caffeine effect was abolished but the IP₃ effect remained unaffected (Fig. 5b). The Ca²⁺

release induced by two successive calcium pulses was also inhibited in the presence of RR (Fig. 5c).

This suggests that in acinar cells of the exocrine pancreas IP₃ and caffeine and/or calcium act on two different Ca²⁺ release channels. Ryanodine, an inhibitor of Ca²⁺-induced Ca²⁺ release in sarcoplasmic reticulum (Rousseau et al., 1987), had no effect on Ca²⁺ release as induced by caffeine, by Ca²⁺ or by IP₃ at tested concentration of 10^{-5} and 3×10^{-4} mol/liter (*data not shown*).

Action of GTP on the Effect of Caffeine and IP_3

In order to examine if "connection" of Ca^{2+} pools described above (*see* Figs. 3, 4 and 6) could be " Ca^{2+} conveyance" between Ca^{2+} pools, as had been postulated to occur in the presence of GTP (Mullaney et al., 1988; Ghosh et al., 1989) with or without PEG we have studied the action of GTP on both IP₃- and caffeine-induced Ca^{2+} release in isolated membrane vesicles.

As shown in Fig. 8a when membrane vesicles of the Percoll fraction P_1 were incubated in the absence of PEG, addition of 10^{-5} mol/liter GTP at steady state neither did induce any Ca²⁺ release nor did it influence the Ca²⁺ release induced by caffeine. However, when incubation was performed in the presence of the membrane fusogen PEG (3%) (Fig. 8b and c), addition of 10^{-5} mol/liter GTP caused Ca^{2+} release followed by Ca^{2+} reuptake. The rate of GTP-induced Ca^{2+} release as well as the rate of Ca^{2+} reuptake were slow when compared to the rates after addition of IP_3 (Fig. 8c). In the presence of GTP reuptake of Ca²⁺ did not occur into the IsCaP, since subsequent addition of IP₃ at steady state did not result in further Ca^{2+} release (Fig. 8b). Without GTP and PEG, however, Ca^{2+} reuptake following IP₃induced Ca²⁺ release partially filled an IsCaP since a second addition of IP₃ caused a second Ca²⁺ release (see Fig. 5a). The effect of GTP could not be observed with its nonhydrolyzable analogue GTP_yS (Fig. 8c). When GTP, in the presence of PEG, was added together with IP₃ an enhancement of the latter

Fig. 5. (a) Effect of heparin on IP₃ and caffeine-induced Ca²⁺ release from membrane vesicles (fraction P_1 of the Percoll gradient). Membrane vesicles (1 mg protein/ml) were incubated in standard incubation medium. Heparin (100 µg/ml), IP₃ (5 × 10⁻⁶ mol/liter), caffeine (2 × 10⁻² mol/liter) and CaCl₂ 5 nmol (final concentration of 2.5 × 10⁻⁶ mol/liter) were added where indicated. One out of two similar experiments. (b) Effect of caffeine and IP₃ on Ca²⁺ release from vanadate- and ruthenium red (RR)-pretreated membrane vesicles (fraction P_2 of the Percoll gradient). Microsomes preincubated for 15 min in standard incubation with vanadate (10⁻⁴ mol/liter) and with or without RR (10⁻⁵ mol/liter), IP₃ (5 × 10⁻⁶ mol/liter) and CaCl₂ 5 nmol (final concentration of 2.5 × 10⁻⁶ mol/liter) and CaCl₂ 5 nmol (final concentration of 2.5 × 10⁻⁶ mol/liter) were added where indicated. One out of two similar experiments. (c) Effect of heparin and RR on Ca²⁺-induced Ca²⁺ release from membrane vesicles of the Percoll fraction P_1 . Membrane vesicles, at a final concentration of 1 mg protein/ml, were incubated in standard incubation medium in the absence or presence of 10⁻⁵ mol/liter RR. Heparin (100 µg/ml) and CaCl₂ pulses of 5 or 10 nmol (final concentration of 2.5 × 10⁻⁶ mol/liter) and caCl₂ pulses of 5 or 10 nmol (final concentration of 2.5 × 10⁻⁶ mol/liter) incubated in the added where indicated in standard incubation medium in the absence or presence of 10⁻⁵ mol/liter RR. Heparin (100 µg/ml) and CaCl₂ pulses of 5 or 10 nmol (final concentration of 2.5 × 10⁻⁶ mol/liter) and caCl₂ pulses of 5 or 10 nmol (final concentration of 2.5 × 10⁻⁶ mol/liter) incubated in the indicated

Fig. 6. Caffeine-induced calcium release from pancreatic membrane vesicles (Percoll fraction P_1) in the presence of vanadate (10^{-4} mol/liter) or of IPS₃ + IP₃ (3 × 10^{-5} mol/liter and 5 × 10^{-6} mol/liter, respectively). Following 15-min preincubation of membrane vesicles in a standard incubation medium with or without 10^{-4} mol/liter vanadate, membrane vesicles with vanadate preincubation were added to incubation buffer with vanadate (10^{-4} mol/liter) and vesicles without vanadate preincubation were added to IP₃ (5 × 10^{-6} mol/liter) + IPS₃ (3 × 10^{-5} mol/liter) containing incubation buffer as indicated. Caffeine at a final concentration of 2 × 10^{-2} mol/liter was added where indicated. One out of two similar experiments

Fig. 7. Effects of caffeine $(2 \times 10^{-2} \text{ mol/liter})$, vanadate $(10^{-4} \text{ mol/liter})$, $1PS_3$ ($5 \times 10^{-5} \text{ mol/liter})$, caffeine + vanadate, and $1PS_3$ + vanadate on Ca²⁺ uptake and subsequent Ca²⁺ release from membrane vesicles of the Percoll fraction P_1 . Membrane vesicles (1 mg protein/ml) preincubated for 15 min without or with vanadate were incubated in standard incubation medium in the absence or presence of either caffeine, vanadate, $1PS_3$, caffeine + vanadate, or $1PS_3$ + vanadate as indicated. Ca²⁺ uptake was monitored with a Ca²⁺ electrode as described in Methods. One out of three similar experiments

effect was observed (Fig. 8c). When GTP, in the presence of PEG, was added together with caffeine, the amount of Ca^{2+} released was also higher than with GTP alone (Fig. 8b), and in contrast to effects of caffeine alone (Fig. 4a) Ca^{2+} was taken up again.

Discussion

We have previously described the presence of two nonmitochondrial Ca^{2+} pools in pancreatic acinar

cells: an IP₃-sensitive Ca²⁺ pool (IsCaP), which takes up Ca²⁺ via a Ca²⁺/H⁺ exchanger, and an IP₃insensitive Ca²⁺ pool, into which Ca²⁺ uptake is mediated by a vanadate-sensitive Ca²⁺ transport ATPase. While IP₃ releases about 30% of all Ca²⁺ that had been taken up by cells, any mechanism by which Ca²⁺ is released from the IP₃-insensitive Ca²⁺ stores has not been found so far. Ghosh et al. (1989) gave evidence that in the presence of GTP Ca²⁺ conveyance between IP₃-sensitive and IP₃-insensi-

Fig. 8. (a) Effects of GTP and caffeine on Ca^{2+} release from membrane vesicles of the Percoll fraction P_1 . Membrane vesicles at a final concentration of 1 mg protein/ml were incubated under standard conditions. Where indicated GTP (final concentration of 10^{-5} mol/liter) and caffeine (final concentration of 2×10^{-2} mol/liter) were added. (b) Effect of GTP, of caffeine, of GTP + caffeine, and of IP₃ on Ca^{2+} release from membrane vesicles of the Percoll fraction P_1 in the presence of PEG (3%). Membrane vesicles at a final concentration of 1 mg protein/ml were incubated in standard incubation medium supplemented with 3% (wt/vol) PEG. Where indicated GTP (final concentration of 10^{-5} mol/liter), caffeine (final concentration of 2×10^{-2} mol/liter) and CaCl₂ 5 nmol (final concentration of 2.5×10^{-6} mol/liter) were added. Typical for five similar experiments. (c) Effects of GTP, of GTP γ S, of IP₃ and of GTP + IP₃ on Ca²⁺ release from membrane vesicles (fraction P_1 of the Percoll gradient) in the presence of PEG (3%). Membrane vesicles (1 mg protein/ml) were incubated in standard incubation medium supplemented with 3% (wt/vol) PEG. Where indicated GTP (final concentration of 10^{-5} mol/liter) were added. Typical for five similar experiments. (c) Effects of GTP, of GTP γ S, of IP₃ and of GTP + IP₃ on Ca²⁺ release from membrane vesicles (fraction P_1 of the Percoll gradient) in the presence of PEG (3%). Membrane vesicles (1 mg protein/ml) were incubated in standard incubation medium supplemented with 3% (wt/vol) PEG. Where indicated GTP (final concentration of 10^{-5} mol/liter), GTP γ S (final concentration of 10^{-5} mol/liter), IP₃ (final concentration of 5×10^{-6} mol/liter) and CaCl₂ 5 nmol (final concentration of 2.5×10^{-6} mol/liter calcium) were added. Typical for four similar experiments

tive Ca^{2+} stores occurs. The physiological significance of these observations, however, is not clear.

The present study investigates the question if "communication" between IsCaPs and IisCaPs could be produced by IP_3 -induced Ca^{2+} release from

the IsCaP causing Ca^{2+} -induced Ca^{2+} release from the IisCaP or alternatively by "connection" of Ca^{2+} pools similar to that reported for GTP-induced Ca^{2+} conveyance between Ca^{2+} pools (Ghosh et al., 1989). The former point was examined by using caf-

feine, an activator of Ca²⁺-induced Ca²⁺ release channels in the sarcoplasmic reticulum (Endo, 1977; Rousseau & Meissner, 1989). In pancreatic acinar cells Osipchuk et al. (1990) have shown that caffeine alone had no effect on the cytoplasmic Ca2+ concentration, but potentiated the Ca2+-releasing action of acetylcholine, IP3 and GTPyS, an activator of Gprotein coupling phospholipase C. We were also unable to find any caffeine effect in isolated permeabilized acinar cells or in a crude fraction of endoplasmic reticulum (fluffy layer) (data not shown). A small caffeine-induced Ca2+ release could be observed only in the presence of vanadate, which inhibits Ca²⁺ reuptake of released Ca²⁺, so that a small effect became visible (data not shown). However, in the lightest fraction of the Percoll gradient (P_1) , in which the IP₃ effect is higher than in the "fluffy layer," a caffeine-sensitive Ca^{2+} pool (CasCaP) is present (Figs. 4a, 5a, 6 and 8a). Percoll fraction P_1 also contains a vanadate-sensitive Ca²⁺ pool (VasCaP) since, Ca²⁺ reuptake following IP₂ addition was inhibited in the presence of vanadate (Figs. 1 and 2a).

Fractions P_2 and P_3 contain less IP₃-sensitive Ca²⁺ pools, less vanadate-sensitive Ca²⁺ pools and no or only small amounts of caffeine-sensitive Ca²⁺ pools. It appears that the IP₃-, caffeine- and vanadate-insensitive Ca^{2+} pools in fractions P_2 and P_3 are mainly of the type described previously (Thévenod et al., 1989a) which have the Ca^{2+}/H^+ exchanger but no IP₃ receptors and could be inhibited by NBD-Cl (Thévenod et al., 1989a; Fig. 2b and c). In fractions P_4 and P_5 mainly the VasCaP and neither IsCaP nor CasCaP are present (Table 2). Since fraction P_1 contains all types of Ca²⁺ pools: the IsCaP (IP₃-sensitive), an IisCaP (IP₃-insensitive, vanadateinsensitive), the VasCaP (vanadate-sensitive, IP₃insensitive), and the CasCaP (caffeine-sensitive), it appeared the most suitable fraction to study the interplay between these Ca^{2+} pools.

CAFFEINE- AND Ca²⁺-INDUCED Ca²⁺ Release

The caffeine- and Ca^{2+} -induced Ca^{2+} release mechanism as described here appears to be different from that described for skeletal, cardiac or smooth muscle (Fleischer et al., 1985; Rousseau et al., 1987; Kanmura et al., 1988). The main difference is its insensitivity to ryanodine in the present study and in the study on the caffeine-sensitive Ca^{2+} channel present in the pancreatic endoplasmic reticulum (Schmid et al., 1990), whereas ruthenium red inhibited caffeine and Ca^{2+} -induced Ca^{2+} release (Fig. 5b and c) similar to that in the sarcoplasmic reticulum (Ohnishi, 1979; Miyamoto & Racker, 1981). Caffeine- and cal-

cium-induced Ca^{2+} release were not inhibited by heparin, an inhibitor of the IP₃ effect (Fig. 5*a* and *c*). Therefore the IP₃-induced Ca^{2+} release mechanism is different from that of Ca^{2+} -induced Ca^{2+} release.

Are the Caffeine- (Ca^{2+}) Sensitive and IP₃-Sensitive Ca²⁺ Pools Separate Stores?

The following discusses the question if the IsCaP and CasCaP are separate, partly overlapping or come into contact under some circumstances. If membrane vesicles were preincubated in the presence of caffeine, no apparent inhibition of Ca^{2+} uptake occurred and the IP₃ effect was the same in both caffeine-pretreated and -untreated vesicles, indicating that the IsCaP is not identical or overlapping with the CasCaP (Fig. 3). Ca²⁺ uptake remains even more stable in the presence of caffeine as compared to the control, which shows "spontaneous" Ca²⁺ release (Fig. 7).

However, when caffeine was added acutely at steady state, complete Ca2+ release occurred from IP₃-pretreated vesicles (Fig. 6) as well as from control vesicles which include the IsCaP (Figs. 6 and 4a). One possibility to explain these different effects of caffeine when present during Ca2+ uptake and when added after steady state [Ca2+] had been reached is the assumption that Ca^{2+} pools come into contact at steady state and that this "contact" is initiated by the CasCaP. If caffeine was in the medium, the CasCaP is supposed not to be filled with Ca^{2+} and to remain uncoupled from other Ca^{2+} pools which do not show "spontaneous" Ca2+ release (Fig. 7). However, if Ca^{2+} uptake occurs into the CasCaP in the absence of caffeine "spontaneous" Ca^{2+} release occurs from all Ca^{2+} pools which had taken up Ca2+ previously indicating connection of Ca²⁺ pools. Opening of the Ca²⁺ release channel could be favored by the intravesicular Ca²⁺ concentration when the CasCaP had been filled. In the presence of caffeine added at steady state this effect would be enhanced. In a previous study we have reported about the presence of a caffeine-sensitive Ca²⁺ channel in membranes from endoplasmic reticulum (ER) as measured with the patch-clamp method. This Ca²⁺ channel is voltage sensitive and opens at inside-positive potential differences (Schmid et al., 1988). In the absence of a Cl⁻ conductance small Ca^{2+} efflux from the Ca^{2+} pool would generate an inside-negative potential difference and closure of the Ca²⁺ channel. We had previously described electrogenic Ca²⁺ uptake into membrane vesicles from pancreatic ER that could be inhibited by vanadate (Kemmer et al., 1987). A Cl⁻ channel

A in isolated vesicles (P1)

B in intact cells

Fig. 9. Model for Ca^{2+} uptake and IP_3 - and Ca^{2+} -induced Ca^{2+} release from different Ca^{2+} pools in endoplasmic reticulum of pancreatic acinar cells. We assume the presence of three separate Ca²⁺ pools in pancreatic acinar cells. An IP₃-sensitive Ca²⁺ pool (IsCaP) takes up Ca^{2+} via a Ca^{2+}/H^+ exchanger (Thévenod et al., 1989a). A Ca^{2+} and caffeine-sensitive Ca^{2+} pool (CasCaP) with the Ca^{2+} -induced Ca^{2+} release (CICR) mechanism probably contains the same Ca^{2+} uptake mechanism as the IsCaP but no IP₃ receptors. (In addition similar Ca^{2+} pools with the Ca^{2+}/H^+ exchanger but without IP₃ receptors and without CICR or with both types of Ca^{2+} release mechanisms are also possible). The third Ca^{2+} pool, VasCaP, contains an electrogenic vanadate-inhibitable Ca^{2+} pump (Kemmer et al., 1987) a Cl⁻ channel (Schmid et al., 1988) and neither IP₃-receptors nor the CICR mechanism. During Ca^{2+} uptake these Ca^{2+} pools stay separate. However, at steady state connection of Ca^{2+} pools proceeds from the CasCaP by a mechanism that could involve GTP (Ghosh et al., 1989) and/or signals such as the intravesicular [Ca²⁺] or a low pH reached at steady state. It is assumed that under the experimental conditions in isolated vesicles (A) Ca^{2+} uptake into the CasCaP and connection of Ca^{2+} pools occurs without previous IP₃-induced Ca²⁺ release from the IsCaP. However, in intact cells there may be only little Ca²⁺ in the CasCaP at rest. During stimulation cytosolic $[Ca^{2+}]$ is increased by IP₃-induced Ca²⁺ release and Ca²⁺ may be taken up into the CasCaP (B). This leads to connection of Ca²⁺ pools and coupling to the VasCaP containing Cl⁻ channels which allows Ca²⁺ efflux from the CasCaP and other Ca²⁺ pools connected to the CasCaP. Ca²⁺ release will lead to disconnection of the Ca²⁺ pools due to decreased intravesicular [Ca²⁺] or increased pH as a consequence of increased Ca^{2+}/H^+ exchange during Ca^{2+} efflux from the CasCaP. The idea that progression of the Ca^{2+} signal occurs from the surface cell membrane to the cell interior through the IsCaP is based on models by Berridge and Irvine (1989), Goldbeter et al. (1990) and Putney (1986) as well as on data from Osipchuk et al. (1990)

The mechanism, by which the connection of Ca^{2+} pools at steady state occurs, is not clear. As will be discussed below it seems to be different from that which can be activated by GTP.

$Ca^{2\, +}$ Release in the Presence of GTP

As shown in Fig. $8b \text{ Ca}^{2+}$ release could be induced by addition of GTP in the presence of PEG. In the presence of caffeine GTP-induced Ca²⁺ release was higher than with GTP alone (Fig. 8b). Similarly, the IP₃ effect was higher in the presence of GTP and PEG (Fig. 8c). However, total Ca²⁺ release was not seen in the absence of vanadate and Ca²⁺ reuptake into a VasCaP occurred. Following addition of GTP, subsequent addition of IP₃ did not result in further Ca²⁺ release, indicating that the IsCaP had been emptied in the presence of GTP.

The experiments with GTP also show that a vesicle-outside Ca²⁺ concentration higher than 8×10^{-7} mol/liter was reached without following Ca²⁺ release (Fig. 8b). Ca²⁺ reuptake occurring at concentrations higher than 10^{-6} mol/liter [Ca²⁺] was *not* due to an effect of GTP itself but was rather a consequence of fusion in the presence of PEG (Comerford & Dawson, 1988). This is shown in Fig. 8a, demonstrating that without PEG in the medium the caffeine effect was not enhanced in the presence of GTP and Ca²⁺ reuptake did not occur.

The differences of caffeine effects, seen in GTP + PEG-treated (Fig. 8b) and -untreated vesicles (Figs. 4, 5a and 8a), allow the conclusion that the mechanisms of GTP-induced Ca²⁺ conveyance between Ca²⁺ pools (Mullaney et al., 1987), which likely involves fusion of Ca²⁺ pools, is different from that occurring in GTP-untreated membranes as described here.

Summarizing, Fig. 9 shows our model, which assumes at least three different Ca^{2+} pools, which are probably separate during Ca^{2+} uptake, but come into connection at steady state, so that Ca^{2+} conveyance between these pools can occur. In addition, a Ca^{2+} pool with the Ca^{2+}/H^+ exchanger but lacking IP₃ receptors and Ca^{2+} -induced Ca^{2+} release mechanism, such as present in fractions P_2 and P_3 , might also occur in pancreatic cells but is not included in the model.

The vanadate- and IP_3 -sensitive Ca^{2+} pools had been already described previously (Thévenod et al., 1989*a*). In addition, we postulate a Ca^{2+} pool with a Ca^{2+} -induced Ca^{2+} release mechanism that is also sensitive to caffeine. At a vesicle-outside (cytosolic) Ca^{2+} concentration of $5.5-8 \times 10^{-7}$ mol/liter this channel opens, probably favored by a high intravesicular Ca^{2+} concentration that is reached in this pool at steady state. Since in the presence of caffeine in the medium the steady state [Ca^{2+}] remains more stable than in the control (Fig. 7), it appears that connection of Ca^{2+} pools at steady state proceeds from the caffeine-sensitive Ca^{2+} pool indicated by "budding off" of the membrane in the CasCaP. If the CasCaP remains depleted of Ca^{2+} in the presence of caffeine it remains uncoupled from other Ca^{2+} pools and significant Ca^{2+} release does not occur.

Connection of Ca²⁺ pools could occur as a consequence of the intravesicular Ca²⁺ concentration or pH in the CasCaP reached at steady state. Recently evidence has been obtained that vesicular traffic between the ER and the Golgi apparatus requires GTP and Ca^{2+} ions (Sambrook, 1990). A role of pH in fusion was obtained in experiments with liposomes demonstrating that clathrin enhanced fusion at acidic pH in the phosphatidylserine-containing vesicles (Hong, Yoshimura & Papahadjopoulos, 1985). We assume that in experiments with isolated vesicles (Percoll fraction P_1) (Fig. 9A) at a buffer concentration of $\approx 2 \times 10^{-6}$ mol/liter Ca²⁺ uptake into the CasCaP leads to filling of this pool with Ca²⁺. However, since any caffeine effect was not seen in resting intact pancreatic acinar cells, there may be only little Ca2+ in the CasCaP at rest. During stimulation cytosolic Ca²⁺ is increased by IP₁-induced Ca^{2+} release and Ca^{2+} may be taken up into the CasCaP (Fig. 9B; Goldbeter, Dupont & Berridge, 1990). As had been shown by Osipchuk et al. (1990) caffeine evoked regular Ca^{2+} spikes when applied in the presence of a subthreshold dose of acetylcholine or in the presence of a subthreshold intracellular Ca2+ infusion (Wakui, Potter & Petersen, 1989), whereas in the absence of stimulation caffeine did not evoke any effect (Osipchuk et al., 1990). This indicates that Ca²⁺ stored in the CasCaP is released into the cytosol in a process activated by increased cytosolic [Ca²⁺]. According to our model (Fig. 9) Ca²⁺ release from the CasCaP would be possible only if an intravesicular signal (such as the intravesicular $[Ca^{2+}]$ or pH) allows connections to be established to the VasCaP containing Cl⁻ channels.

We wish to thank Prof. Dr. K.J. Ullrich for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft.

M. Dehlinger-Kremer et al.: Caffeine-, IP₃- and Vanadate-Sensitive Ca²⁺ Pools

References

- Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. *Nature* (London) **312**:315-321
- Berridge, M.J., Irvine, R.F. 1989. Inositol phosphates and cell signalling. *Nature (London)* 341:197–205
- Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72:248–254
- Comerford, J.G., Dawson, A.P. 1988. The mechanism of action of GTP on Ca²⁺ release from rat liver microsomal vesicles. *Biochem. J.* **249**:89–93
- Cooke, A.M., Gigg, R., Potter, B.V.L. 1987. Myo-inositol-trisphosphorothioate: A novel analogue of biological second messenger. J. Chem. Soc. Chem. Commun. 1987:1525–1526
- Ehrlich, B.E., Watras, J. 1988. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. *Nature (London)* 336:583–586
- Endo, M. 1977. Calcium release from the sarcoplasmic reticulum. *Physiol. Rev.* **57:**71–108
- Fleischer, S., Ogunbunmi, E.M., Dixon, M., Fleer, E.A.M. 1985. Localization of Ca²⁺ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. *Proc. Natl. Acad. Sci. USA* 82:7256–7259
- Ghosh, T.K., Mullaney, J.M., Tarazi, F.I., Gill, D. 1989. GTPactivated communication between distinct inositol 1.4,5-trisphosphate-sensitive and insensitive calcium pools. *Nature* (London) 340:236–239
- Goldbeter, A., Dupont, G., Berridge, M.J. 1990. Minimal model for signal-induced Ca²⁺ oscillations and for their frequency encoding through protein phosphorylation. *Proc. Natl. Acad. Sci. USA* 87:1461–1465
- Hong, K., Yoshimura, T., Papahadjopoulos, D. 1985. Interaction of clathrin with liposomes: pH-dependent fusion of phospholipid membranes induced by clathrin. *FEBS Lett.* 191:17–23
- Hosey, M.M., Lazdunsky, M. 1988. Calcium channels: Molecular pharmacology, structure and regulation. J. Membrane Biol. 104:81-105
- Kanaide, H., Shogakiuchi, Y., Nakamura, M. 1987. The norepinephrine-sensitive Ca²⁺-storage site differs from the caffeinesensitive site in vascular smooth muscle of rat aorta. FEBS Lett. 214:130-134
- Kanmura, Y., Missiaen, L., Raeymaekers, L., Casteels, R. 1988. Ryanodine reduces the amount of calcium in intracellular stores of smooth-muscle cells of the rabbit ear artery. *Pflue*gers Arch. 413:153–159
- Kanmura, Y., Raeymaekers, L., Casteels, R. 1989. Effects of doxorubicin and ruthenium red on intracellular Ca²⁺ stores in skinned rabbit mesenteric smooth-muscle fibres. *Cell Calcium* 10:433–439
- Kemmer, T.P., Bayerdörffer, E., Will, H., Schulz, I. 1987. Anion dependence of Ca²⁺ transport and (Ca²⁺ + K⁺)-stimulated Mg²⁺-dependent transport ATPase in rat pancreatic endoplasmic reticulum. J. Biol. Chem. 262:13758–13764
- Lai, F.A., Erickson, H.P., Rousseau, E., Liu, Q., Meissner, G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle. *Nature (London)* 331:315–319
- Leijten, P.A.A., van Breemen, C. 1984. The effect of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J. Physiol. (London) 357:327–339
- Martonosi, A.N. 1984. Mechanism of Ca²⁺ release from sarcoplasmic reticulum of skeletal muscle. *Physiol. Rev.* 64:1240-1319

- Miyamoto, H., Racker, E. 1981. Calcium-induced calcium release at terminal cisternae. FEBS Lett. 133:235–238
- Miyamoto, H., Racker, E. 1982. Mechanism of calcium release from skeletal sarcoplasmic reticulum. J. Membrane Biol. 66:193-201
- Mullaney, J.M., Chueh, S.H., Ghosh, T.K., Gill, D.L. 1987. Intracellular calcium uptake activated by GTP. J. Biol. Chem. 262:13865–13872
- Mullaney, J.M., Yu, M., Ghosh, T.K., Gill, D.L. 1988. Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. *Proc. Natl. Acad. Sci. USA* 85:2499–2503
- Ohnishi, S.T. 1979. Calcium-induced calcium release from fragmentated sarcoplasmic reticulum. J. Biochem. 86:1147–1150
- Osipchuk, Y.V., Wakui, D.I., Gallacher, D.V., Petersen, O.H. 1990. Cytoplasmic Ca²⁺ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca²⁺: Simultaneous microfluorimetry and Ca²⁺-dependent Cl⁻ current recording in single pancreatic acinar cells. *EMBO J.* **9**:697–704
- Putney, J.W., Jr. 1986. A model for receptor-regulated calcium entry. Cell Calcium 7:1–12
- Rousseau, E., Meissner, G. 1989. Single cardiac sarcoplasmic reticulum Ca²⁺-release channel: Activation by caffeine. Am. J. Physiol. 256:H328-H333
- Rousseau, E., Smith, J.S., Henderson, J.S., Meissner, G. 1986. Single channel and ⁴⁵Ca²⁺ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. *Biophys. J.* 50:1009-1014
- Rousseau, E., Smith, J.S., Meissner, G. 1987. Ryanodine modifies conductance and gating behaviour of single Ca²⁺ release channel. Am. J. Physiol. 253:C363-C368
- Sambrook, J.F. 1990. The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. *Cell* 61:197-199
- Schmid, A., Dehlinger-Kremer, M., Schulz, I., Gögelein, H. 1990. Voltage-dependent IP₃-insensitive calcium channels in membranes of endoplasmic reticulum vesicles from rat exocrine pancreas. *Nature (London)* **346**:374–376
- Schmid, A., Gögelein, H., Kemmer, T.P., Schulz, I. 1988. Anion channels in giant liposomes made of endoplasmic reticulum vesicles from rat exocrine pancreas. J. Membrane Biol. 104:275-282
- Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inositol 1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J. Membrane Biol. 81:241– 253
- Streb, H., Schulz, I. 1983. Regulation of cytosolic free Ca²⁺ concentration in acinar cells of rat pancreas. Am. J. Physiol. 245:G347–G357
- Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca²⁺ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. *Nature (London)* **306**:67–69
- Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T., Numa, S. 1989. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. *Nature (London)* 339:439–445
- Thayer, S.A., Perney, T.M., Miller, R. 1988. Regulation of calcium homeostasis in sensory neurons by Bradykinin. J. Neurosci. 8:4089-4097

- Thévenod, F., Dehlinger-Kremer, M., Kemmer, T.P., Christian, A.L., Potter, B.V.L., Schulz, I. 1989a. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IiCaP) nonmitochondrial Ca²⁺ pools in rat pancreatic acinar cells. J. Membrane Biol. 109:173–186
- Thévenod, F., Kemmer, T.P., Christian, A.L., Schulz, I. 1989b. Characterization of MgATP-driven H⁺ uptake into a microsomal vesicle fraction from rat pancreatic acinar cells. J. Membrane Biol. 107:263-275
- Valdivia, H.H., Coronado, R. 1989. Inhibition of dihydropyridine-sensitive calcium channels by the plant alkaloid ryanodine. FEBS Lett. 244:333-337
- Wakui, M., Potter, B.V.L., Petersen, O.H. 1989, Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. *Nature (London)* 339:317–320
- Willcock, A.L., Potter, B.V.L., Cooke, A.M., Nahorski, S.R. 1988. Myo-inositol 1,4,5-trisphosphorothioate binds to specific ³H-inositol 1,4,5-trisphosphate sites in rat cerebellum and is resistant to 5-phosphatase. *Eur. J. Pharmacol.* 155:181–183

Received 18 April 1990; revised 28 June 1990